In the paper and pulp industry, the demand for clean, 100% Class 0 oil-free compressed air is paramount. The use of uncontaminated air is essential for ensuring smooth operations and high-quality output, particularly when manufacturing fine-grade paper. Contaminants in the compressed air can lead to defects and inefficiencies, making air purity a critical factor in production processes.
Roller Adjustment: Compressed air is used to adjust rollers in paper manufacturing machines, ensuring optimal pressure and alignment for consistent product quality.
Feeding Paper Presses: Air-powered systems facilitate the feeding of paper into presses, enhancing the efficiency of the production line.
Agitating Solutions: Compressed air helps agitate chemical solutions used in the paper-making process, ensuring even mixing and effective treatment of pulp.
Spraying Protective Coatings: It powers sprayers that apply protective coatings to paper products, enhancing durability and resistance to moisture and damage.
Cutting and Pressing: Compressed air operates cutting and pressing machinery, providing the necessary force for precise and efficient operations.
In summary, compressed air is a vital resource in the paper and pulp industry, ensuring that processes run smoothly and efficiently. By utilizing clean, oil-free air, manufacturers can maintain high standards of quality and reliability in their products. Investing in advanced compressed air systems is essential for achieving success in this competitive sector.
Piping Material Features Comparison |
|||
Piping Features | Stainless Steel(Type 304L) | Mild Steel | Blue anodized Aluminum Alloy |
Weight (Dia 6inch, Length 6m) | 127.2 | 169.6 | 29.142 |
Corrosion Resistant | Yes | No | Yes(100%) |
Pressure drop (Dia 2 inch Length= 20m,Airflow=3 cubic metres/Minute, Pressure=10 bar) | 0.25 | 0.4 Bar | 0.1 |
Energy Efficiency | High | Low-moderate | High( Potential Cost savings of 34%) |
Mechanical Strength | Very Strong | Very Strong | Strong |
High-Temperature Rating | Yes | Yes | Yes |
Installation Ease | Less Difficult | Difficult | Easy(High Flexibility and Modularity) |
Installation Time | Approx 6 feet length per hour | Approx 6 feet length per hour | Approx 45 feet Length per hour |
Work Hours/Manpower Required for a 2″ pipe and a 3000 feet piping | Approx 600 man-hours/8 men for 2 weeks | Approx 600 man-hours/8 men for 2 weeks | Approx 100 man-hours /8 men for less than 2 days |
Annual Cost(Installation, Commissioning, and operation) | Approx 3000 dollars | Approx 7820 dollars | Approx 1300 dollars |
Installation Cost Material%/Labor% | 30% / 70% | 25% / 75% | 80% / 20% |
Surface roughness | 0.03 | 0.05 | 0.001 |
Special Tools Required (welder, threader, groove cutter) | Yes | Yes | No |
Air Quality | High(Should the application require it, these pipe systems can help meet the requirements of ISO 8573-1: 2010 air quality standards. | Low( Not according to !SO 8573-2010 air quality standards) | High(Should the application require it, these pipe systems can help meet the requirements of ISO 8573-1: 2010 air quality standards. |
Cost per meter | Almost 2 less than Aluminum | 3 Times less than Aluminum | 163.64 Dollars(Parker Transair) |
Life Span( Will vary according to environmental factors, Pipe design, and Pipe grade. | 30 years | 40 years | 20 years |
Initial Cost of installations | Material : 30% Labor:70% | Material : 25% Labor:75% | Material : 80% Labor:20% |
Maintenance | Difficult(Accumulation of rust under pipes and fittings which travels to machinery, may require preventive maintenance every week) | Difficult (Accumulation of rust under pipes and fittings which travels to machinery may require preventive maintenance every 3-4 days) | Easy (No accumulation of rust, may require preventive maintenance every 4 Weeks) |